

Séminaire AXE 1 - Sciences et Matériaux Quantiques

Mardi 24 Février 2026 | 11:00 | Auditorium de l'IPCMS

Gabriela Borin Barin

nanotech@surfaces Laboratory, Empa, Dübendorf, Switzerland
gabriela.borin-barin@empa.ch

Atomically precise graphene nanoribbons: the road towards device integration

Graphene nanoribbons (GNRs) are emerging as a key platform for nanoelectronics due to their tunable band gaps, quantum confinement effects, and atomically precise structures [1]. Their electronic and magnetic properties can be tailored at the single-atom level, enabling applications from field-effect transistors (FETs) to spintronic devices. In this talk, I will outline the pathway from bottom-up synthesis under ultra-high vacuum conditions to device integration. I will focus on the synthesis of atomically precise GNRs, their transfer to technologically relevant substrates [2] using wet and dry methods, and their structural and electronic characterization via Raman spectroscopy [3] and scanning probe techniques [4]. Special emphasis will be placed on the integration of 9-atom-wide armchair GNRs (9-AGNRs) into multi-gated FET architectures using graphene and carbon nanotube electrodes [5,6]. These devices display quantum dot behavior with well-defined Coulomb diamonds, highlighting the potential of GNRs for quantum transport studies and scalable device applications.

- [1] J. Cai *et al.*, *Nature*, **466** (2010)
- [2] G. Borin Barin *et al.*, *ACS Applied Nanomaterials*, **2** (2019)
- [3] R. Darawish *et al.*, *Carbon*, **218** (2024)
- [4] A. Kinikar *et al.*, *ACS Applied Nanomaterials*, **8** (2025)
- [5] J. Zhang *et al.*, *Nature Electronics*, **6** (2023)
- [6] J. Zhang *et al.*, *Nature Reviews Materials*, 1-19 (2026)

Contact

Arnaud GLOPPE (arnaud.gloppe@ipcms.unistra.fr) – David HAGENMULLER (david.hagenmuller@ipcms.unistra.fr)